
1

CHAPTER 1

 INTRODUCTION

1.1 ABSTRACT

The Internet-based instant messaging services (e.g. MSN messenger, GTalk) have

become the most popular communication choice among millions of people worldwide for

communicating with family, friends and business associates. Due to the huge number of

mobile subscribers, there is a real demand to provide such a service to mobile clients. Despite

technology‟s significant advantages, the primary disadvantage is that only users who are on

the same network can chat with each other on that particular network. For instance, a Yahoo!

user can only chat with another Yahoo! user but not to the AOL user. Thus, we propose a

mobile instant messaging system, IIMS, which integrates all popular networks like AOL,

GTalk and Jabber designed for mobile environments. This instant messaging system is

expected to provide to its members an improved, single contact point, efficient, portable,

easy-to-use, inter-network connectivity within a single application.

2

1.2 INTRODUCTION & MOTIVATION

 The combination of presence awareness and real-time messaging offered by instant

messaging systems has proved to be the source of a killer application in the Internet,

gathering hundreds of millions of users. Although originally considered a teenager toy, the

benefits of instant messaging have been realized by both academic and corporate

organizations in the last few years.

Concurrently with the instant messaging revolution of the Internet, the introduction of

text messaging has launched a similar phenomenon in mobile networks. Over time, mobile

messaging has proved one of the most important sources of revenue for providers of mobile

services and new messaging services, such as multimedia messaging and mobile email, have

been introduced in recent years.

Instant messaging services have enjoyed a constant growth ever since their

introduction. Real-time messages and presence information are the pieces of technology that

makes instant messaging different from previous communication services. However, the

success of instant messaging is not based on technical differences only; also the methods and

concepts used in instant messaging clients, such as popup windows and buddy lists, have

contributed to the birth of a completely new type of communication.

3

1.3 PROBLEM STATEMENT

The already existing applications are dedicated to particular network and allow users

of that network to communicate with the users of the same network. Thus there exists no

interoperability among various chat networks. For instance, a Gmail user can only chat with

another Gmail user but not with the AOL user. These applications if deployed on mobile

phones, requires the subscriber to open multiple applications to chat on different networks,

thus consuming the memory and battery power of the mobile phone.

This project delivers a single, easy-to-use, portable and efficient instant messaging

system to be used on mobile phones. The system provides a single application with inter-

network connectivity allowing the users log into multiple accounts to chat with their buddies

regardless of which network they belong. It allows the users to view and manage their

contacts (buddies). Also, the application allows the user to insert smiley‟s portraying their

personality, thoughts and emotions and manage user groups.

4

1.4 SCOPE

 IIMS is a multi-protocol IM which will integrate all popular networks like Jabber, GTalk

and AOL to be deployed on mobile phone.

 The system will be a single point of contact allowing the users to connect to different chat

networks in one place. It will allow the users to chat with their buddies regardless on

which network they belong to.

 It provides a rich and powerful UI allowing the users to access most of the handy features

in a single tap or two.

 The system will provide support for multiple account login to its users.

 The system will allow the users to reflect their personality, thoughts and emotions via the

use of emoticons.

 It will also allow the user to change their presence and status settings.

 The system will also provide the facility of maintaining the buddy list like adding /

deleting a user from his contacts.

5

1.5 ORGANIZATION OF THE REPORT:

Chapter 2: Review of Literature: This chapter consists of the domain explanation, current

technology and methodology available. It also describes the technology and methodology

used in the project and the overview of the project.

Chapter 3: Analysis and Design: This chapter determines the functional, non-functional,

hardware, software requirements as well as describes the architecture of the system with

different kinds of diagrams like use-case diagram, class diagram, state chart diagram, etc.

Chapter 4: Implementation and Results: This chapter provides information about the

implementation details of the project which includes task sheets and Gantt chart.

Chapter 5: Testing: This chapter deals with different tests conducted while testing the

application in a real time environment.

Chapter 6: Conclusion and Future Work: This chapter determines the new functionalities

that can be added to enhance the functionalities of the application.

6

CHAPTER 2

REVIEW OF LITERATURE

2.1 DOMAIN EXPLANATION

Instant Messaging (IM) systems such as ICQs, AIM and MSN Messenger have

become extremely popular during the last few years. All these systems are designed for

desktop PCs with the assumption that a user only uses one computer or at least only one

computer at a time. With the rapid advancement of wireless network technologies, Mobile

Instant Messaging has become a major application in the telecommunications industry.

2.2 CURRENT TECHNOLOGY & METHODOLOGY USED

Instant Messaging applications are tools that allow users to exchange messages with

remote users, similarly to what provided by e-mail services, but in an instantaneous fashion.

The number of users of instant messaging software is quickly growing as it not only helps to

communicate better, but also provides a cheapest way to communicate on long distance using

free voice/video conferencing or to share files and directories. In this section, we introduce

and discuss the protocols of some of the most popular leading brands among instant

messaging services.

The main issue in instant messaging (IM) is that it does not exist a precise

standardization of the architecture and protocols, as they are most often proprietary and the

owners do not generally allow exchanging instant messages with users of rival IM

applications, nor they disclose contents of the source code. All the information and software

based on such systems, unless provided by the owner, is due to reverse engineering work.

The IETF working group IMPP is working to develop architecture for instant messaging and

presence service in order to provide a specification on how authentication, message integrity,

encryption and access control must be integrated.

7

2.2.1 INSTANT MESSAGING AND PRESENCE

Instant messaging is a type of communication service providing users with two

elements; presence information and real-time messaging [2]. As it is an essential part of

instant messaging it is necessary to provide a definition for presence as well. Presence is a

means for finding, retrieving, and subscribing to changes in the presence information (e.g.

“online” or “offline”) of other users. [3].

2.2.2 PRESENCE SERVICE

Figure 2.1 displays an overview of a presence service. A presence service has two

distinct types of clients: „presentities‟ and „watchers‟. Presentities provide presence

information to the presence service, while watchers request presence information about

presentities from the presence service. Naturally, the same application can act both as

presentity and as a watcher.

Fig 2.1:- Overview of presence service

8

The watchers are classified as well; there are „subscribers‟, „fetchers‟ and „pollers‟. A

subscriber is a watcher that has subscribed to the presence information of presentity. The

presence service keeps track of the subscriptions and sends a notification to the subscriber

whenever the presence information of the subscribed presentity changes. A fetcher requests

the presence service for presence information about presentity. The presence service does not

send notifications to fetchers, presence information is only sent upon the request of the

fetcher. A poller is a special kind of a fetcher that polls the presence service for presence

information about presentity on a regular basis.

Fig 2.2:- Different kinds of watcher

2.2.3 INSTANT MESSAGING SERVICE

Equally to the presence service, the instant message service also has two kinds of

clients: „senders‟ and „instant inboxes‟ (see Figure 2.3). Senders are the source of instant

messages to be delivered by the instant message service. An instant inbox is a container for

instant messages that are to be read by the owner of the inbox. The instant message service

accepts instant messages from senders and attempts to deliver them to the instant inboxes, to

which they are addressed.

Fig 2.3:- Overview of Instant Message service.

9

2.2.4 STANDARDS AND PROTOCOLS

Ever since it became evident that users of the proprietary solutions would not be able

to communicate with each other, IETF has been striving to produce a standardized solution

for instant messaging. This section presents the results of the standardization efforts.

2.2.4.1 IMPP

IETF originally chartered IMPP (Instant Messaging and Presence Protocol) in order to

define protocols and data formats necessary to build an internet-scaled instant messaging

system. The working group managed to produce a model for presence and instant messaging

in RFC 2778 [4] and requirements for an instant messaging protocol in RFC 2779 [3].

However, as stated in Section 2.2, the working group failed to achieve a common consensus

for an instant messaging protocol. This resulted in the launch of several new working groups

specifying protocols based on IMPP. It was decided that although the IMPP working group

was not to specify any instant messaging protocol, it would carry on with its work. It would

focus on producing standards for enabling interoperability between instant messaging

systems. The working group has since created RFCs containing:

1. a common extensible instant message format (message/cpim)

2. a common extensible presence information format (application/pidf+xml)

3. a common profile for instant messaging (CPIM)

4. a common profile for presence (CPP)

CPIM [5] and CPP [6] specify semantics and data formats for common instant messaging

and presence services. The goal of the profiles is to facilitate the creation of gateways

between instant messaging systems for interoperability. CPIM uses the message/cpim MIME

(Multipurpose Internet Mail Extension) type [7] as data format for instant messages while

PIDF (Presence Information Data Format) [8] is used for formatting presence information in

CPP.

In order for an instant messaging system to be IMPP compliant, it must conform to the

CPIM and CPP profiles and their data formats as well as meet the requirements of RFC 2778

and RFC 2779.

10

2.2.4.2 SIMPLE

The IETF SIMPLE (SIP for Instant Messaging and Presence Leveraging Extensions)

working group was one of the three working groups formed in 2000 when the IMPP working

group failed to agree on a common protocol for instant messaging. Of the three, the SIMPLE

solution is the only one still going strong; the other two have more or less failed. As the name

indicates, SIMPLE is based on SIP (Session Initiation Protocol) [12]. The primary work of

the SIMPLE working group is to generate an IMPP-compliant proposed standard SIP

extension for instant messaging. SIMPLE defines the presence protocol as an instantiation of

the general event notification framework for SIP [11]. For sending instant messaging

SIMPLE provides two modes: a pager mode [10] and a session mode [9]. When using the

pager mode instant messages are sent as SIP messages. In session mode SIP is used to initiate

a session, in which the instant messages then are sent. The progress of the SIMPLE working

group has been quite slow, mostly due to the complexity of the SIP protocol. Overall, the

SIMPLE specifications currently consist of close to 20 Internet Drafts. Only a few Requests

for Comments has been produced so far, including pager mode messaging specified in RFC

3428. Despite the slow-moving standardization process, the SIMPLE standard has gained

support from several major companies including Microsoft, IBM and Yahoo.

11

2.3 TECHNOLOGY AND METHODOLOGY USED IN PROJECT

2.3.1 MOBILE INSTANT MESSAGING SYSTEM

Similar to instant messaging in the Internet, mobile messaging also took off in the last

decade of the 20th century. Mobile IM and presence detection technology is revolutionizing

the way in which we communicate by a factor equal to or greater than e-mail. Most

communications today are time-delayed: You send an e-mail and wait for a reply, leave a

phone message and wait for a return call, or submit a document for review and wait

indefinitely for feedback. Mobile IM‟s presence concept means quicker responses in most

cases because the sender knows at the time of sending a message that the other person is

available online, thus reducing telephone and email by allowing simulated face-to-face

communications.

Due to the huge number of mobile subscribers, there is a real demand to provide such

a service to mobile clients. In order to do so, there is a need to keep track on both the

presence and the locations of the participating clients. That is, each subscriber must be always

aware about the where about of all the other members in its group, and who are the active

members at any given moment. A mobile instant messaging service is expected to provide to

its members an improved, easy-to-use inter-group connectivity, and to support advanced

services such as a conference call, a multicast message, and a group search, in an efficient

manner in near future.

As the word „mobile‟ has several distinct interpretations depending on the context,

attempting to provide an unambiguous definition of „mobile instant messaging‟ is in place.

MobileIN.com provides a proper definition stating that “Mobile Instant Messaging is the

ability to engage in IM from a mobile handset via various bearer technologies, which

may include SMS, WAP or GPRS” [1].

12

Although implied by the examples of bearers in the previous definition, it should be

stressed that only devices connected through wireless bearers can participate in mobile instant

messaging. A device must be able to be both mobile and connected to a network

simultaneously in order to engage in mobile instant messaging. A device connected to a wire

line network that first is disconnected, then moved and finally reconnected does not fit this

requirement. Furthermore, a handset is required to participate in mobile instant messaging.

Therefore, using instant messaging from a laptop connected through a wireless connection is

not considered mobile instant messaging as the laptop does not have the limitations of a

typical handset.

13

2.3.2 AOL/Oscar

2.3.2.1 Overview

Oscar [Oscar] (Open System for Communication in Realtime) is the official IM

protocol developed by AOL. Oscar is a closed protocol and all the knowledge available about

it comes from reverse engineering. It is TCP-based and binary. Since Oscar is not an open

protocol, non-proprietary clients do not support a lot of the features it offers, while it is easier

to provide all the functionalities included in TOC [Proto].

2.3.2.2 Protocol Operation

The architecture of the Oscar protocol is illustrated in Figure 3. The server is

distributed and the two main components are the Authorizer, which validates username and

password and the BOS (Basic Oscar Service). Before connections are made to any of the BOS

or special-purpose servers it is necessary to be authorized by the Authorization Server

(login.oscar.aol.com). It will reply sending a cookie that automatically authorizes the user to

connect to any of the BOS or special-purpose (for example Advertisement, Chat, etc) servers.

Fig 2.4:- Working of OSCAR Protocol.

14

The normal steps taken to create an average AIM session are as follows [Oscar]:

1. Connect to Authorizer and retrieve Cookie.

2. Connect to the Authorizer-recommended BOS server and initiate BOS service

3. (Optional) Connect to Advertisements server and retrieve first block of ads

 (repeat at regular interval)

4. (Optional) Connect to any other non-BOS services that may be available

 (AFAIK, none at this point)

The last three steps can actually follow any order, but authorization must always be the first.

15

2.3.3 Jabber

Jabber is the most widespread open source platform, using an XML encoded protocol,

especially tailored to provide instant messaging (IM) and presence services over the Internet;

however, Jabber is not designed just for this purpose, but several are the applications that

may benefit and use the Jabber protocol suite. The protocol is totally free from legacy rights;

both on the server and on the client side, which means that anyone can design its own Jabber

client and even that any organization can freely implement an internal jabber server. Many

are the advantages that come out from this approach:

1. The fact that the protocol is open lead to a better understanding of it, as everyone can

learn from the work previously done and make available its code to other developers

for the same purposes.

2. XML allows easy extensibility to the main features of the protocol. The Jabber

Software Foundation accounts for the common extensions.

3. Decentralized approach. Since any organization can have its Jabber server, the

resulting architecture is more scalable as lighter load is posed on the single servers,

compared to a centralized approach.

Although the protocol itself does not provide means to achieve interoperability with

other IM protocols, this is possible by means of server-side gateways, which take care of the

communication between users in the Jabber space and users in the space of other (possibly)

proprietary protocols. Jabber-related activities are ongoing in the Extensible Messaging and

Presence Protocol (XMPP) IETF working group [XMPP]; the working group has been

chartered to discuss extensions to the XMPP protocol, which is the core of the Jabber

platform, especially to be compliant to the requirements posed by [RFC2779], RFC from the

IETF Instant Messaging and Presence Protocol (IMPP) working group, chartered to define a

standard protocol for providing instant messaging and presence services. A good document

describing Jabber main features is [SA01].

16

2.3.3.1 Protocol Operation

Jabber is essentially a client-server architecture, where users register to a server to

have access to the Jabber system, and use that server as intermediary when exchanging

messages with other users, also if they are registered with another server. User names in

Jabber are in e-mail like format, such as userA@serverA.com.

Fig:- Simplified Jabber Network Architecture.

The Jabber protocol basically foresees the following kinds of messages:

1. <message/> used to actually carry the messages exchanged.

2. <presence/> used for the service of presence

3. <iq/> (info/query) used for messages of other kind, such as for authorization

purposes.

The exchange of message in the Jabber protocol is stream-based, and a Jabber session

is indeed identified by two XML streams flowing in the two client-server directions. The

protocol runs over TCP, using the well known, at protocol level, port 5222. A typical

message exchange in a Jabber session, could be the following:

1. A Jabber client sends a message to a Jabber server to open a connection and

initiate an XML stream.

2. The server sends its reply and opens an XML stream for the server to client

direction.

17

2.3.4 XMPP

The Extensible Messaging and Presence Protocol (XMPP) is beyond doubt the

strongest challenger to the SIMPLE standard in the Internet. Like SIMPLE, XMPP is also

administered by an IETF working group, i.e. the XMPP working group. XMPP has been

formed from the basis of the Jabber protocol. The Jabber protocol is the result of a project

started by Jeremie Miller in 1998 [13]. The goal of the project was to produce an

interoperable and open instant messaging protocol, an alternative to the proprietary solutions.

The first public release of the protocol took place in May 2000. In June 2000 project

members sent an Internet Draft of the Jabber protocol to the IMPP working group (see

Section 2.5.1) as an instant messaging protocol proposal. However, the organization of the

Jabber project was not mature enough at the time and the Internet Draft was left to expire. In

2001 the Jabber Software Foundation was formed to organize the projects and commercial

bodies involved in the Jabber community. Following the reorganization, a new Internet Draft

was submitted to the IETF in February 2002, eventually leading to the birth of the XMPP

working group in October 2002. XMPP is in essence the core of the XML (Extensible

Markup Language) based Jabber protocol. XMPP has been made IMPP compliant by the

working group. The Jabber Software Foundation will continue to work on the parts of the

Jabber protocol that are not part of XMPP or IMPP, exploring features such as: multi-user

chat, calendaring and whiteboarding.

Compared to SIMPLE, the XMPP solution is more mature. Recently, three of four

Internet Drafts have been approved as Proposed Standards and the protocol has already been

widely deployed with tens of thousands of active servers and millions of users. Although it

has not acquired the support of as many major companies as SIMPLE, XMPP is also

embraced by big enterprises, including Hewlett-Packard and Intel. An in-depth comparison of

SIMPLE and XMPP from the viewpoint of XMPP can be found in [14].

18

CHAPTER 3

ANALYSIS AND DESIGN

3.1 REQUIREMENT ANALYSIS

3.1.1 FUNCTIONAL REQUIREMENTS

3.1.1.1 SERVER

 The server holds all the information for the buddy lists and the profiles of all the

clients. The server allows multiple clients to connect to the network and have a group chat.

3.1.1.2 CLIENT

The client can connect to the server to have a group chat as well as private chats with

other clients. They can have buddy lists and profiles for each individual user. There is a

complex GUI for the client that entails every aspect it is supposed to do

3.1.1.2.1 Description and Priority

 Allows for an unlimited amount of private, one-on-one chats between any two

users.

 Priority = HIGH

3.1.1.2.2 Stimulus/Response Sequences

 Stimulus: User double clicks on a name in the buddy list.

 Response: System presents new message dialog.

 Stimulus: User selects to send a new message from the menu.

 Response: System presents new message dialog with a username field.

19

3.1.1.2.3 Functional Requirements

 REQ-1: System queries server to ensure desired contact is online

 REQ-2: System queries server to verify send permissions

 REQ-3: System queries server to determine IP address.

 REQ-4: System attempts to contact client at appropriate IP address.

 On error: System attempts to retry several times

 On further error: System reports that client is unreachable and notifies

 server.

3.1.1.3 CONNECTIONS TO OTHER MESSENGING SYSTEMS

3.1.1.3.1 Description and Priority

 Allows users to connect to third-party networks.

 PRIORITY = HIGH / MEDIUM (High for at least one network, medium for all

others)

3.1.1.3.2 Stimulus/Response Sequences

 Stimulus: User attempts to connect to third-party networks.

 Response: System authenticates and connects to third-party network.

 3.1.1.3.3 Functional Requirements

 REQ-1: System must support a number of third party networks.

20

3.1.1.4 LOGGING

3.1.1.4.1 Description and Priority

 Allows for client side and server side logging of chats and private messages.

 PRIORITY = MEDIUM

3.1.1.4.2 Stimulus/Response Sequences

 Stimulus: User enables logging

 Response: System logs text of all future conversations

 Stimulus: Administrator enables logging of a particular chat

 Response: System logs chat to specified log file

3.1.1.4.3 Functional Requirements

 REQ-1: System transparently writes all text to a file on the system, whether

server-side or client-side.

21

3.1.1.5 BUDDY LIST / PROFILE SUPPORT

3.1.1.5.1 Description and Priority

 Allows for server-side storage of Buddy Lists and user created Profiles.

 PRIORITY = HIGH

3.1.1.5.2 Stimulus/Response Sequences

 Stimulus: User creates a buddy list.

 Response: Server Responds by connecting to third party APIs.

 Stimulus: User updates buddy list.

 Response: System updates the stored buddy list.

 Stimulus: Admin updates a user‟s buddy list

 Response: System updates the stored buddy list.

 Stimulus: User creates a profile

 Response: System stores profile on server

 Stimulus: User uploads a picture for identification

 Response: System checks size of picture then accepts or denies it.

 Stimulus: Admin edits a profile

 Response: System re-writes the profile file.

3.1.1.5.3 Functional Requirements

 REQ-1: System must support writing of files to the local hard drive

 REQ-2: System may support a lightweight database backend.

 REQ-3: System must transfer buddy lists to clients upon connection

22

3.1.2 NON FUNCTIONAL REQUIREMENTS

3.1.2.1 Operating platform

 Android OS

3.1.2.2 Reliability

The server applies all translation algorithms as well as establishing connections which

means that as long as the client is connected to the server the entire application works.

3.1.2.3 Portability

The users can launch the application where ever internet connection is available since

it‟s a mobile device

3.1.2.4 Performance

The performance of the system depends on the device it is being used. A 3G enabled

device may have high performance. The internet connection with high speed will have high

performance.

3.1.2.5 Authentication

The user is authenticated on application start up. The user and password are checked

by the server. There should be no duplicate user names when the account is created. Once the

user is connected to the server the contacts are loaded into the user‟s device. The Auto login

feature will enable users to sign into different account upon application start-up.

3.1.2.6 Scalability

As the users increase the system could be implemented on a cloud service. The

project may not require large server space since it is related more to academic purpose and

not commercial.

23

3.1.3 Constraints

3.1.3.1 Message length

 Messages may be a maximum length of 500 characters.

3.1.3.2 Credentials

 User names and passwords must be a maximum length of 25 characters. Usernames

must be a minimum of five characters, and must not be duplicated in the login database.

Passwords must be a length of at least four characters, and may be duplicated in the Login

database. All passwords must be hidden fields.

24

3.1.4 HARDWARE & SOFTWARE REQUIREMENTS

3.1.4.1 HARDWARE REQUIREMENTS

Hardware Requirement Development Use

Android Mobile Phone Android OS 2.3 or higher Deployment Platform

Mobile Phone Memory 1.5 Mb free space Application Size: 840kb

(before installation)

GPRS LAN/WAN/WIFI Internet access for

connecting to the server

3.1.4.2 SOFTWARE REQUIREMENTS

Software Requirement Development Use

Windows Operating System Windows Vista/ 7 For development of

application

Jdk 1.6 and higher version For developing code.

Eclipse IDE Java EE bundle Environment setup

ADT Plugin To be used with eclipse

Android SDK r12 or higher For development of

application

Android SDK manager To download Android OS

platforms

API for android devices

AVD manager Creating a emulator For running the application

25

3.2 PROJECT DESIGN

3.2.1 xADL Diagram:-

Fig 3.1:- xADL Architecture of the System

26

3.2.2 USE CASE DIAGRAM:-

Fig 3.2:- Use Case Diagram for the overall system.

27

3.2.3 ACTIVITY DIAGRAM:-

Fig 3.3:- Activity diagram

28

3.2.4 STATE CHART DIAGRAM:-

Fig 3.4:- State Chart Diagram

29

3.2.5 SEQUENCE DIAGRAM:-

Fig 3.5:- Sequence diagram

30

3.2.6 COLLABORATION DIAGRAM:-

Fig 3.6:- Collaboration Diagram

31

CHAPTER 4

IMPLEMENTATION AND RESULTS

4.1 IMPLEMENTATION DETAILS

Implementation is the realization of an application, or execution of a plan, idea, model,

design, specification, standard, algorithm, or policy. In computer science, an implementation is a

realization of a technical specification or algorithm as a program, software component, or other

computer system. Many implementations may exist for a given specification or standard. In

implementation of a software project the design model prepared is converted into a robust,

reusable code using appropriate coding language. The implementation process runs along with

the unit testing for checking the correctness of each coding unite. Different modules of the

software are implemented separately and after appropriate testing these are integrated with each

other logically to form the entire product.

4.1.1 LOGIN

 The user must enter the account username, which is his JID (jabbered). The jabber id

could be a Gmail username as well.

 << private void checkUsername (String username){}>>

 The user must enter the account password.

 << private void checkPassword(String password){}>>

 If the user is using a proxy server, he must enter the IP address of the server.

 The IIMS Application uses xmppConnectionAdapter to create a socket connection to

XMPP server. This is a default connection to a Jabber/gmail server.

 The jabber/gmail server authenticates the username and password.

 If username or password is incorrect the user gets notified by the message “bad

 login and username”.

 If the remote server is down, the error message is “remote server error.

32

4.1.2 IIMS CONTACTS

 Once the user is authenticated.

 The buddy list is retrieved from the existing accounts database from the Xmpp

server.

 If the buddy/contact list is empty the user can add contacts to the buddy list using

the add contact option in the menu.

 Buddy list is the dialog showing the buddies associated to the connected accounts.

Additionally the status of active connections is displayed using the presence service.

 <<public class PresenceAdapter >>.

 This class imports a smack library from the jive software.

 << import org.jivesoftware.smack.packet.Presence; >>

 The user can scroll the contact list using the andrioid.app interface.

 The contact can be added to specific groups. When adding a contact not already

existing in the buddy list the contact name, alias and group is to be specified.

 Upon the next login the users will be added to the specific groups.

4.1.3 ADD CONTACT

 If the user is added via the IIMS application.

 Contacts are added using the AddContact.java file. The user must first click on the

menu button on the bottom and select addcontact.

 On click (onClick(view v)) the add contact layout appears. The email id is entered in

the contact text box. The email id is matched to check whether the email id is valid.

 If the contact is already added then a prompt message appears “contact already

exists”.

 If the email has error the prompt “error login”.

 Else the contact is added in the buddy list.

33

If the user is added from other source other than the IIMS application.

 If a user wants to add a contact using other service except iims application and if the

requested user is using the iims application during the request, a subscription

notification is displayed on the android device.

 The iims user when taps on the notification, the user is directed to the iims application

where he can accept or deny the subscription request.

4.1.4 MESSAGING

When using the messaging feature the application requires user to have a Gmail

account. While connecting the application uses Google talk server. Google talk server

provides the service choice. The Google Talk network supports open interoperability with

hundreds of other communications service providers through a process known as

federation. This means that a user on one service can communicate with users on another

service without needing to sign up for, or sign in with, each service.

The Google talk server support open federation with any service provider that

supports the industry standard XMPP protocol.

 To message a contact tap on the active contact. The android text box appears where

the user can type in the message.

 The message window consist of the following:

 The receiver of the message.

 The type of message.

 The body of the message.

 The sender of message.

 The time stamp.

34

 After writing the body of the message the user can send the message using the send

button.

 If the receiver is available the message will be sent to the user.

 If the receiver is unavailable the following cases should be considered

 If(gmail user)

 The message will be stored on to the gmail xmpp server. When the

receiver is online the user will receive the message.

 If(jabber user)

 The message will be stored on to the jabber xmpp server. When the

receiver is online the user will receive the message

 If(aim user)

 The message will not be received till the user is online. The error

message “recipient-unavailable” is prompted on the chat window.

4.1.5 OTR MESSAGING

 Off-the-record Messaging, commonly referred to as OTR, is a cryptographic protocol

that provides strong encryption for instant messaging conversation. OTR uses a

combination of the AES symmetric-key algorithm, the Diffie-Hellman key exchange, and

the SHA-1 hash function.

 The iims application provides a support to have private conversations over instant

messaging by using off-the-record (OTR) Messaging feature.

 While chatting both the user can start an OTR session by using the OTR actions from

the chat menu.

 When the OTR session is activated from both the users the text gets encrypted on the

communication channel.

35

4.1.6 IIMS PERMISSIONS

 Here is a list of different permissions used by IIMS.

 android.permission.internet: to access the internet connection.

 android.permission.vibrate : to set vibrate on IIMS notifications

 android.permission.write_external_storage : to stock the avatar data on the sd card

 android.permission.access_network_state : to check the connectivity status

 com.iims.project.iims.IIMS_SERVICE : Custom permission which will be used to

allow other applications to use the iims service

4.1.7 THREADS

 The events from the user interface are dispatched from the main thread. To make it

fell efficient there are threads maintained for each connection. The idea is to do

background job while being interactive to user. The communication basic is show below.

Fig 4.1: - Threads for connection

36

4.1.8 GANTT CHART

37

4.2 RESULTS:-

38

39

40

41

42

43

44

45

46

CHAPTER 5

TESTING

5.1 INTRODUCTION

5.1.1 PURPOSE

The objective of this document is to determine the list of Test Cases that needs to be

executed when assuring the system's quality. Each test case is described below in accordance

with Test Case Specification.

5.1.2 BACKGROUND

The system to be developed is an integrated instant messaging system for Android

platform. According to Software Requirement Specification the system is to support the use

of Jabber, Gmail, and AOL/AIM instant messaging service in a single integrated application.

This instant messenger is intended for Android software market and is positioned as a

standalone product.

5.1.3 SCOPE

Test Cases document contains the list of Use Cases only without their detailed

description.

47

5.2 TEST CASES

Test Case Id: - 1

Features to be tested: - Login Functionality

Steps: - Enter user id and password.

Input Specifications: - 1. Incorrect user id and password

 2. Incorrect user id but correct password

 3. Correct user id but incorrect password

 4. Correct user id and password

Expected Results: - 1. Error

 2. Error

 3. Error

 4. Login Successful

Actual Results: - 1. Error during authentication, bad login or password (Refer fig: 5.1)

 2. Error during authentication, bad login or password (Refer fig: 5.1)

 3. Error during authentication, bad login or password (Refer fig: 5.1)

 4. Error during authentication, bad login or password (Refer fig: 5.2)

Comments: - Tested and Passed.

48

Fig 5.1:- Error during authentication

Fig 5.2:- Login Successful

49

Test Case Id: - 2

Features to be tested: - Add a Contact Functionality

Steps: - Enter user id, alias name(optional) and group(optional).

Input Specifications: - 1. Already existing User

 2. Non-existing User

 3. Deleting a User

Expected Results: - 1. Contact cannot be added as it is already existing.

 2. Contact Successfully added

 3. Contact Successfully deleted

Actual Results: - 1. Contact already exists (Refer fig: 5.3)

 2. Contact added (Refer fig: 5.4)

 3. Contact deleted (Refer fig: 5.5)

Comments: - Tested and Passed.

Fig 5.3 Contact Already Exist

50

Fig 5.4:- Contact Added

Fig 5.5:- Contact Deleted.

51

Test Case Id: - 3

Features to be tested: - Chat Functionality

Steps: - N/A

Input Specifications: - Select a user to chat with and enter your messages.

Expected Results: - 1. Message sent by one client is delivered to other client

2. Message sent by one client to other client that is logged out is

 delivered to the client when it logs in

Actual Results: - 1. Message is delivered to the client (Refer fig: 5.6)

 2. Message is delivered as a notification to the client when it logs in

 (Refer fig: 5.7 & 5.8)

Comments: - Tested and Passed.

Fig 5.6:- Message delivery from one client to other client.

52

Fig 5.7:- Message sent to a logged off client

Fig 5.8:- Message received by the client as a notification.

53

Test Case Id: - 4

Features to be tested: - Add/Delete a user to/from a Group

Steps: - Create a group.

Input Specifications: - Select the user, click on manage user, manage group.

 Add the user to the group or delete the user from an existing group.

Expected Results: - 1. User is added to the group

2. User is deleted from the group

Actual Results: - 1. User gets added (Refer fig: 5.9, 5.10 & 5.11)

 2. User is deleted (Refer fig: 5.12)

Comments: - Tested and Passed.

Fig 5.9:- Already created group (test group1).

54

Fig 5.10:- Adding a user to the group.

Fig 5.11:- User added to the group

Fig 5.12: - User deleted from the group.

55

CHAPTER 6

CONCLUSION AND FURTHER WORK

6.1 CONCLUSION

 The project delivered allows the users of Jabber/Gmail/AOL to interoperate and

communicate with each other without any barriers. The users can log on to any network and

chat with other users belonging to other network. Also the system allows the users to reflect

their personality, thoughts, and emotions with the use of emoticons in their messages. The

system allows the user to maintain multiple accounts and buddy list.

 However, due to advancements made in the technology, various new features can be

added to the existing system which will enhance the functionality of the system. Features like

online file sharing, email, voice over IP, conferencing, location tracker to track the location of

the available user via GPS, etc can be incorporated into the project to make the system more

useful and widely acceptable in corporate and non-corporate areas.

